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A B S T R A C T

It is challenging to stream 360◦ videos over the mobile network for its stringent latency and high bandwidth
requirements. Although edge-based viewport adaptive tiled 360◦ video streaming solutions alleviate the
bandwidth demand, the backhaul congestion and low latency concern remain persistent when data is served
from the Content Delivery Network over the Internet. Edge caching can help mitigate these issues by storing the
content at the edge of the cellular networks on the base station. However, caching 360◦ videos is challenging
because of the large file size, which is further convoluted by tile selection in caching decisions. In this work,
we propose a Mobile Edge Computing (MEC) based tiled 360◦ caching solution that uses Long–Short-Term-
Memory (LSTM) and Convolutional Neural Network (CNN) in conjunction to address the challenges associated
with 360◦ video caching. Specifically, the LSTM model predicts the future popularity of the videos, assisting in
cache replacement decisions. For the selected videos, the CNN model, which is trained using the saliency map of
the video, identifies the most engaging tiles in the videos for caching using the video content itself. The caching
of tiles instead of the whole 360◦ videos improves the caching efficiency of the resource-constrained MEC
server. The LSTM model is optimized based on the loss value of different hyperparameters, and AUROC (Ares
Under ROC Curve) is used to evaluate the accuracy of the CNN model. Both the models produce highly accurate
results. The results from extensive simulations show that the proposed solution significantly outperforms the
existing methods. It improves the cache hit rate by at least 10% and reduces the backhaul usage by at least
35% with significant improvement in end-to-end latency, which is crucial for the quality of experience in 360◦

video streaming.
1. Introduction

The 360◦ video streaming, also known as panoramic or omnidi-
rectional video, is getting popular for its immersive experience. It is
expected to grow at 48.7% CAGR (Compound Annual Growth Rate) to
become a global market of $47.7 billion by 2024 (Mordor Intelligence,
2020). The users access the 360◦ video content through dedicated
Head-Mounted Displays (HMD) such as Oculus and HTC Vive, or by
placing their smartphone in a dedicated headset, e.g., Google Card-
board and Samsung Gear VR. Smartphone-based 360◦ video streaming
uses wireless networks and is expected to dominate the Virtual Reality
(VR) market (Mordor Intelligence, 2020). However, delivering the 360◦

video over the wireless network is challenging for its high bandwidth
and stringent latency requirements. The 360◦ video streaming requires
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400 Mbps transmission rate to deliver high-definition (960×720) user ex-
perience (Song et al., 2019) with a smooth playback (Huawei, 2016). It
is difficult to achieve in wireless networks, more specifically in cellular
networks (McGarry, 2021). Besides the high bandwidth requirement,
the end-to-end latency is another practical challenge in achieving high-
fidelity 360◦ video streaming over cellular networks (Huawei, 2016).

In 360◦ video streaming, the viewer watches only a small part,
which is in the Field-of-View (FoV) of the whole spherical scene. Previ-
ous studies (Qian et al., 2018; Zhang et al., 2019; Fan et al., 2020) have
investigated this characteristic of 360◦ video streaming to reduce the
bandwidth requirement by spatial prioritization of 360◦ video content.
Tilling enables the viewport adaptive 360◦ video streaming where
360◦ video is spatially divided into small tiles which can be encoded
and transmitted independently. Although viewport-adaptive tiled 360◦
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video streaming significantly reduces bandwidth requirements, stream-
ing 360◦ video from distant content servers is still challenging due
to network latency and backhaul congestion. VR services are suscep-
tible to latency, and if Motion-to-Photon (MTP) latency is more than
20 ms, users may feel a strong sense of dizziness (Hu et al., 2021).
Although the viewport-adaptive 360◦ video streaming methods reduce
the bandwidth requirement, the whole video is still fetched from the
remote server to the network edge. Transmitting these large-size 360◦

ideos stress the cellular network infrastructure, demanding further
nvestments to accommodate 360◦ video-related traffic. Prior research

substantiates that edge caching is an effective solution to alleviate these
issues (Elazhary, 2019).

In-network caching effectively mitigates the network latency and
backhaul congestion by storing the popular content at the network
edge on the base station (gNBs in 5G). Moreover, caching at the
network edge prevents the redundant data transmission of popular con-
tent, resulting in transit service payment reduction to Internet Service
Providers (ISP) and consequently the Operational Expenditure (OPEX)
for the network operator. Multi-access Edge Computing (MEC) (ETSI,
2014) brings the cloud computing capabilities at the network edge
(e.g., base station) and enables content caching. Edge caching with
MEC can mitigate the challenges associated with 360◦ video streaming.
However, 360◦ video caching presents unique challenges dissimilar to
legacy video caching.

The 360◦ video is characterized by a large file size, and the resource-
constrained MEC server cannot cache all the videos. Tiled 360◦ video
caching can potentially help in utilizing the MEC storage capacity
effectively. However, different users might view different tiles in tiled
360◦ video streaming, which complicates the tile caching decision.
Therefore, determining the tiles that capture the view of many users
is critical for effective caching, and tiles are addressed as the most
engaging tiles in the paper. The regular video caching methods are
not designed to tackle these issues and do not consider that many
tiles in 360◦ video are viewed sparsely. Therefore, a new caching
method is required that can exploit the characteristics of 360◦ video
streaming for efficient caching. Previous studies (Carlsson and Eager,
2020; Qian et al., 2018; Xie et al., 2017) have established a correlation
between viewers’ behavior during 360◦ video playback where most of
the users watch only a small subset of the tiles. Thus, caching the most
requested video tiles on edge would reduce the load on the backhaul
links and the access latency. Recent studies (Song et al., 2019; Dai
et al., 2020; Maniotis et al., 2020; Ballard et al., 2019) have exploited
it for 360◦ video caching. However, prior works require knowledge of
video popularity distribution and users’ viewing patterns, which is not
always available in real-world scenarios. Moreover, previous studies
need past viewport traces for tiles’ viewing probability estimation,
which is difficult to acquire in a heterogeneous environment with
multiple content providers and involves user privacy concerns as well.

This paper explores a novel edge caching approach that does not
require the viewing history of tiles to identify the most engaging
tiles in the 360◦ videos and prior knowledge of video popularity
distribution. We propose a MEC-based tiled 360◦ caching solution
that uses Convolutional Neural Network (CNN) in conjunction with
Long–Short-Term-Memory (LSTM) for 360◦ video caching. A small
number of popular content accounts for most of the user requests in
video streaming, which can be modeled as a time-series (Zink et al.,
2009). Therefore, the proposed method uses the LSTM model for video
popularity prediction, which can accurately forecast the time-series
date (Brownlee, 2018). The LSTM-based prediction model assists the
caching decision by determining the expected future popularity of
the videos. Once the popular 360◦ videos are identified for caching,
determining the most engaging tiles is pivotal to curtail the space
requirement. To identify these tiles, we utilize the video content itself
through the saliency maps. The salient points represent the feature
maps of a video frame, illustrating the prominent regions, and the tiles
2

containing a higher number of salient points are likely to engage the
users’ attention and are expected to be viewed by many users. We pose
the problem of identifying the most engaging tiles through saliency
map as a classification problem and employ CNN, which is widely used
for image recognition and classification, to solve it. A CNN model is
trained to identify these tiles in the 360◦ video using the video saliency
map, which identifies the most engaging tiles of the 360◦ video through
binary classification. Thus the proposed method does not require past
viewing data to identify the most engaging tiles. By employing LSTM
for video popularity prediction in conjunction with CNN-based tile
estimation, the proposed solution outperforms the existing solutions for
360◦ video caching. Following are the major contributions of this work,

• This work presents a comprehensive analysis of a 360◦ video
dataset containing the viewport traces and establishes that the
viewing probability of tiles might help in cache decision.

• Through the empirical evaluation of the dataset, this work asserts
that the video saliency map can assist in determining the most
engaging tiles in the 360◦ videos.

• The proposed solution does not require any prior knowledge of
video popularity distribution and employs an LSTM model to
learn it dynamically.

• The proposed 360◦ video caching solution uses the CNN model
to classify the most engaging tiles using the video saliency map
without any need for the past viewport data.

• A cache replacement algorithm is proposed that uses the LSTM
for video popularity prediction in conjunction with CNN-based
tile classification to efficiently use the MEC resources.

• The performance gain of the proposed solution is illustrated
through extensive evaluation in simulation using the real-world
network 360◦ video streaming traces.

The rest of the paper is organized as follows. Section 2 discusses the
related research work on 360◦ video streaming. The viewer’s behavior
and viewing pattern are analyzed in Section 3, which establishes the
motivation of this work. The system framework is explained in Sec-
tions 4 and 5 provides specifics of the proposed solution. Section 6
presents the evaluation methodology and the detailed analysis of the
results. Finally, the paper is concluded in Section 7 with some possible
future work.

2. Related work

In this section, we briefly review the literature related to edge
caching of 360◦ videos. Edge caching presents an effective solution
to improve the 360◦ video streaming in cellular networks in terms of
observed latency (Poularakis et al., 2019; Wang et al., 2020; Mahzari
et al., 2018-10) and quality of delivered content (Dai et al., 2020;
Maniotis and Thomos, 2021). Furthermore, caching the popular content
on the network edge reduces the backhaul link usage (Dai et al., 2020;
Mahzari et al., 2018-10), energy consumption (Chakareski, 2017), and
network operational cost (Wang et al., 2020). Hence, caching the
popular content at the network edge saves valuable resources. Since
the storage capacity of MEC is usually limited, several optimization
approaches have been proposed to maximize the cache utilization for
large-size 360◦ videos. Different methods of integration of networking,
caching, and computing in wireless networks have been discussed
in Wang et al. (2018) which are followed by works (Pang et al., 2018;
Sukhmani et al., 2019) for edge caching of 5G VR applications. As dis-
cussed in Sun et al. (2019) and Chakareski (2020), MEC for VR caching
comprises a fundamental trade-off between caching, computing, and
communication cost. These techniques optimize the viewport fidelity
efficiently for 360◦ videos but cannot meet the stringent Motion-to-
Photon (MTP) requirement due to the time required to solve the
complex global system optimization problem.

Some existing works consider 360◦ video streaming characteristics
to utilize the cache storage optimally. The work in Carlsson and Eager

(2020) explores this space and reports correlations in the viewing
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direction of users watching the same 360◦ video. The authors have de-
duced its implication on video caching by exploiting the overlap in the
viewports. The video or tile level granularity can be selected to cache
the 360◦ videos. At the tile level, most viewed tiles of the videos can
be cached independently with limited cache capacity (Lu et al., 2019;
Papaioannou and Koutsopoulos, 2019; Maniotis and Thomos, 2021).
On the contrary, caching the whole video may lead to inefficiency,
considering some of the cached tiles will be requested sparsely.

In some works (Maniotis and Thomos, 2021; Wang et al., 2020),
Reinforcement learning (RL) has been applied for caching decisions.
To use the RL for tiles-based 360◦ video caching, the large action
pace problem is tackled by assuming the virtual viewports and a
ixed number of videos are cached. The RL-based method shows the
erformance improvement without any prior assumption about video
opularity but requires retraining on the change in action space caused
y the change in cache size. The tile-based collaborative caching for
60◦ video has been proposed in Maniotis et al. (2020), Maniotis and
homos (2021) and Liu et al. (2021) which shows the benefit of making
he caching decision at tile level and collaboration among the cache
ervers. In contrast to Maniotis et al. (2020) and Maniotis and Thomos
2021), authors in Papaioannou and Koutsopoulos (2019) investigate a
ile-based caching scheme that aims to optimize the error between the
equested and cached tile resolution across different viewports and the
overage of the tiles set. In this work, the authors analyzed the caching
f tiles in different resolutions with layered encoding. Authors in Lu
t al. (2019) and Shi et al. (2020) examine the joint caching, transcod-
ng, and delivery of the 360◦ videos. Although methodologies proposed
n Maniotis and Thomos (2021), Maniotis et al. (2020), Papaioannou
nd Koutsopoulos (2019), Lu et al. (2019) and Shi et al. (2020) demon-
trate promising results for offline caching of 360◦ videos, they are
ot directly applicable for solving the online caching problem as they
ssume that the popularity distribution is known a priori.

Cheng et al. (2021) proposed a proactive caching method for 360◦

ideos. Authors jointly considered computation offloading, data trans-
ission, video coding, and proactive caching for 360◦ video streaming.
owever, they only cache the next video chunk based on FoV pre-
iction and requires head motion information along with the saliency
ap. Ale et al. (2019) proposed a Bidirectional Recurrent Neural
etwork (BRNN) with a CNN layer to accurately predict the con-

ent popularity for proactive caching. Likewise, Nguyen et al. (2021)
roposed an ensemble-based LSTM method for popularity prediction.
uthors first use the LSTM method to identify the real-time content
reference in each demographic user group. Then regression-based
eta-learning model to unify obtained multiple demographic user pref-

rences into a caching strategy. These works use deep learning tools to
redict the content popularity for caching, but do not address the tile
election problem associated with 360◦ video caching.

The discussed works require head motion and tiles’ playback data
o predict the future FoV and to identify the most engaging tiles in
60◦ videos. In absence of these data, these works cannot be used
or 360◦ video caching. Other learning-based methods emphasize on
opularity prediction for proactive or reactive content caching and does
ot explore the challenges associated with 360◦ video caching due to
ts large file size and spatial segmentation. In contrast to the existing
orks, this work presents a tiled 360◦ video caching solution that does
ot require any prior knowledge about popularity distribution of videos
nd tiles. The proposed solution exploits the video content features
o identify the most engaging tiles using a CNN-based classification
odel, unlike the existing works which assume that tiles’ popularity
istribution is available through estimation from past playback traces.
oreover, the proposed solution employs an LSTM-based prediction
odel to estimate the video popularity to make the caching decisions.

. Viewing behavior analysis and motivation

This section first presents the analysis of users’ viewing behavior
◦

3

uring the 360 video playback. Then, we discuss the potential of
viewport history for caching with its limitations, highlighting the mo-
tivation of the proposed solution. Lastly, a learning-based tiled 360◦

video caching approach is introduced based on analytical insights.
Here, an open-source 360◦ dataset (Lo et al., 2017) is analyzed to

identify the users’ viewing patterns and understand the behavior while
watching the 360◦ video content. The dataset contains the orientation
traces of 50 subjects while each subject watched the playbacks of 10
different 360◦ videos. The videos pertain to three different categories:
(i) Computer Graphics (CG), fast-paced (ii) Natural Image (NI), fast-
paced, and (iii) NI, slow-paced. Different categories help to understand
the user behavior across the videos. In the dataset, each video is
recorded at 30 𝐹𝑃𝑆 (frames per second), and only the initial one-
minute playback is used to collect the viewport traces. Hence, the
dataset comprises 500 traces of 360◦ video playbacks, and each trace
ontains 1800 data points. In the dataset, the viewing orientation of
ach frame is recorded by yaw, pitch, and roll angles. The analysis of
his dataset reveals some interesting aspects of 360◦ video streaming.

.1. Viewing orientation distribution

To comprehend the users’ interaction in 360◦ video streaming, we
nspect the histogram of viewing angles (yaw, pitch, and roll) for differ-
nt video categories. The histograms in Fig. 1 indicate that regardless of
he video category, the viewers primarily focus on the front center (0◦)

and viewing angles broadly lie within the 30◦. While shooting, the main
subject usually kept in the front view, which substantiates the viewing
behavior in 360◦ video streaming. We can also observe that users’ head
movement is dominantly in the horizontal (yaw) direction, while head
rotations are sparse since the roll is concentrated near zero. Therefore,
it can be asserted that even though 360◦ video offers a panoramic view,
users predominantly watch the 360◦ videos around the front center.
These characteristics of 360◦ video streaming can be exploited to design
an effective caching scheme.

3.2. Outlook of a simple probability-based caching solution

To further understand the viewing pattern in tiled 360◦ video
streaming, an illustrative heatmap of viewing probabilities of the video
tiles is plotted in Fig. 2a using previous viewing data. The higher
brightness of some tiles depicts that these tiles have been viewed
relatively more frequently. Fig. 2a reveals the disparity in viewership of
the tiles that can be exploited to save the cache storage by not caching
the sparsely viewed tiles.

Further, we study the tile caching for 360◦ video streaming based
on viewing probabilities with predetermined probability thresholds to
investigate the feasibility of a naive caching solution. For this study,
the dataset is bifurcated into learning and testing traces, which are 75%
and 25% of all traces, respectively. The probability (𝑝𝑡) of tile 𝑡 being
in the FoV is calculated on learning traces and defined in Eq. (1),

𝑝𝑡 =
∑𝑖=𝑁

𝑖=1 𝑥𝑖𝑡
𝑁

∣ 𝑥𝑖𝑡 =

{

1, if tile 𝑡 is in the FoV of 𝑖𝑡ℎ playback.
0, otherwise.

(1)

where 𝑁 is the number of video requests and 𝑥𝑖𝑡 ∈ {0, 1} is one if tile 𝑡
is in the FoV of 𝑖𝑡ℎ playback, zero otherwise.

Figs. 2b and 2c represents the heatmaps for the cache miss-ratio and
percentage of tiles cached for the videos, respectively. The horizontal
axis represents the probability thresholds (𝑃𝑇 ) such that if a tile 𝑡 has
viewing probability 𝑝𝑡 > 𝑃𝑇 , it is cached at the MEC. The vertical axis
represents the total number of tiles in each video frame, where (𝑚 × 𝑛)
signifies the number of tiles, horizontally (𝑚) and vertically (𝑛). For
example, 3 × 3 denotes that each video frame is divided into three
tiles horizontally and three tiles vertically, consisting of nine tiles. The
heatmap in Fig. 2c indicates that an increase in probability threshold
reduces the number of cached tiles and thereby increases the cache
miss-ratio. For a probability threshold of 0.1 and 3 × 3 tiles, more than
90% of the 360◦ video tiles are cached. Consequently, cache miss-ratio
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Fig. 1. Histograms representing users’ viewing orientation (yaw, pitch, and roll angle) during video playback for three categories in the dataset (Lo et al., 2017).
Fig. 2. (a) Illustrative heatmap of the tiles for Coaster video in the dataset. (b) Cache miss-ratio with different viewing probability thresholds. (c) Percentage of the cached tiles
with different viewing probability thresholds.
Fig. 3. (a) A frame from the coaster video. (b) The Saliency map of the frame. (c) The heatmap of the tiles from the corresponding video frame.
is very low at 2%. But, caching a large number of tiles does not produce
any significant storage savings compared to video caching. On the other
end, for the probability threshold of 0.9 and 3 × 3 tiles, only 20% of
the tiles are cached, but cache miss-ratio is significantly large (65%).
Moreover, an increment in the number of tiles decreases the percentage
of cached tiles for a given probability threshold while increasing the
cache miss-ratio. An increase in the number of tiles results in a smaller
tile size, permitting a fine-grained selection of tiles for a probability
threshold.

This analysis illustrates that it is possible to apply a simplistic
probability-based method for caching, but it has some serious limita-
tions. First, the identification of a probability threshold that can balance
the miss-ratio and storage requirement is an intricate task. Secondly,
choosing the suitable tile size is also equally important for its impact on
the cache hit-ratio and compression efficiency (Qian et al., 2018). More
importantly, this method requires the viewing probability of the tiles,
which might not be promptly available. Also, storing the viewport data
may raise user privacy concerns as well. Hence, there is a need for a
method that can identify the engaging tiles without using the viewport
traces.
4

3.3. Exploration of saliency map to identify the most engaging tiles

We examine the video saliency map to identify the tiles that are
expected to be viewed by many users for their prominent features.
These tiles are labeled as the most engaging tiles in the paper. If the
saliency map can help to determine these tiles, it can be exploited to
find 360◦ video caching solutions without the need for past viewing
data. This study uses the saliency maps provided in the 360◦ video
dataset (Lo et al., 2017). The 360◦ video saliency maps in the dataset
are generated using the CNN (LeCun et al., 1995). To generate the
saliency maps, first, the saliency map of each frame is calculated using
a Keras-based (Keras, 2021) script developed in Cornia et al. (2016).
Then, saliency maps of frames are concatenated into a 1-min video.
Fig. 3 shows a video frame from the dataset, its saliency map, and
viewership heatmap of the tiles. Figs. 3b and 3c indicate a correlation
between the salient points density and frequently viewed bright tiles
in the heatmap. The salient points capture the notable regions in the
frame, which eminently engage the users’ attention. Therefore, the tiles
containing these regions are relatively watched more frequently in the
video. These preliminary results confirm that the saliency map can be
utilized to identify the most engaging tiles without past viewport data
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Fig. 4. System diagram depicting the deployment of the proposed solution on MEC server at the base station.
for probability estimations. Hence, the saliency maps can be exploited
for the tile-based 360◦ video caching.

4. System framework

Fig. 4 depicts the system framework for the proposed solution
deployed on the MEC architecture at the edge of the cellular network to
satisfy the stringent latency requirement of 360◦ video streaming. The
MEC at the network edge hosts the cache server, caching algorithm,
popularity prediction module containing a pre-trained LSTM model,
and a CNN model for classification of tiles. The viewers send the tile
requests for 360◦ video segments to the MEC server at the network
edge. The MEC server fetches these tiles from local storage if the video
is cached on the MEC, otherwise requests it from the video server
on the Internet. If video is not cached at the edge server, the cache
replacement algorithm makes the replacement decision by considering
the expected future requests estimated by the LSTM model. Once
the replacement video is selected, the algorithm identifies the most
engaging tiles for caching through classification using the CNN model.
The proposed solution caches only the most engaging tiles of the video
to boost cache storage utilization. Different modules of the solution
framework are discussed as follows:

4.1. MEC platform

MEC provides storage and computation capabilities suitable for
hosting the cache servers on the network edge (i.e., the base station)
in the mobile network (ETSI, 2014) which can be accessed at very low
latency. For the Ultra-Reliable Low Latency (URLL) applications such as
virtual reality, edge deployment of the MEC servers are advisable (ETSI,
2018, 2014). However, the proposed solution can be employed with
the other MEC deployment options, i.e., cell aggregation point, core
network, etc. The cache manager module consists of (1) cache replace-
ment algorithm, (2) LSTM model for popularity prediction, and (3)
CNN model of tile classification. The cache manager is responsible for
administering the cache server. Caching 360◦ video tiles at the MEC
server minimizes the network latency during streaming and improves
the users’ Quality of Experience (QoE). If the requested tiles are avail-
able on the MEC servers, they are served from the network edge at
very low latency without incurring any backhaul usage. Otherwise, it
is fetched from the video server on the Internet, and the new tiles
are cached on the MEC based on the decision taken by the cache
replacement algorithm.
5

4.2. Cache replacement algorithm

The cache replacement algorithm is invoked if the requested video
is not cached on the MEC server. It interacts with the popularity
prediction and classification model for caching decisions. The decision
to cache the new video is taken based on the expected future demand
of the videos, predicted by the LSTM model. Instead of caching all the
tiles, the most engaging tiles, which are predicted to be viewed more
frequently by the users, are identified using a CNN classification model
and cached on the MEC server to fulfill future requests.

4.2.1. LSTM model
LSTM networks are a special kind of Recurrent Neural Network

(RNN), which are capable of learning long-term dependencies. LSTMs
are explicitly designed to avoid the long-term dependency problem and
remember information for long periods. Because of these capabilities,
LSTMs are widely used for time-series predictions. In our framework,
a trained LSTM model is deployed on the MEC server to predict the
future demand based on the number of requests in the past. The LSTM
assists the cache replacement algorithm to overcome the myopic nature
by making the caching decision based on future expectations.

4.2.2. CNN model
A Convolutional Neural Network is a Deep Learning algorithm that

receives an input image, assign weights and biases to different aspects
in the image, and can differentiate one image from another. CNN
requires much less pre-processing as compared to other classification
algorithms. While in primitive methods filters are hand-engineered,
with enough training, CNN learns these filters/characteristics during
training (Zhu et al., 2020). Considering these characteristics, we em-
ploy CNN for tile classification in the proposed solution. The cache
manager uses the CNN model for tile classification based on the saliency
map of the video to identify the most engaging tiles for caching. CNN
model takes the tiles’ saliency map as input and performs a binary
classification to determine the most engaging tiles. These tiles are likely
to contain a higher density of salient points and are anticipated to have
higher views. Therefore, only the most engaging tiles from the video are
cached at the MEC server.

5. Learning-based 360◦ video caching solution

In this work, we proposed a learning-based solution that does not
require any prior knowledge of videos and tile popularity distribution.
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Fig. 5. Working model of the proposed solution with employed CNN and LSTM architectures .
We have applied deep learning tools to predict the video popularity and
identify the most engaging tiles using the saliency map. The working
of the proposed solution is depicted in Fig. 5. When a user sends a
video request containing the tile information to the edge server, it
checks the video in the cache. If video is cached on the cache server on
MEC, then cached tiles are transmitted from the cache server. If video
is not cached on the server, then video is fetched from the Content
Delivery Network (CDN) or Internet, and the cache replacement algo-
rithm is invoked to make the caching decision. The cache replacement
algorithm uses an LSTM model to predict the future requests of the
videos. If the new video is expected to get more requests than a cached
video, then the most engaging tiles of the new video are cached on
the MEC server. The cache replacement algorithm uses the pre-trained
CNN model to identify the most engaging tiles from the video. This
CNN model is trained using the video’s saliency map and exploits
the correlation between the saliency map and FoV in the frames. The
cache replacement algorithm stores these tiles of the video in the cache
after the replacement. Details of the different modules in the proposed
solution are as follows.

5.1. LSTM-based popularity prediction

Recurrent Neural Networks (RNNs) have been effective for time
series data forecasting (Ergen and Kozat, 2018) and can be used to
predict video popularity over time. However, RNNs suffer from vanish-
ing gradients problem, which hampers their ability to learn long data
sequences (Vural et al., 2021). When the gradient, which carries the
RNN parameter update information, becomes very small, the parameter
updates become insignificant, which means no real learning is done.
LSTMs are a special kind of RNNs that are explicitly designed to
avoid the long-term dependency problem (Hochreiter and Schmidhu-
ber, 1997) and can remember the information for long periods. Inspired
by Narayanan et al. (2019), we use an LSTM network to estimate the
future popularity of videos. The prediction is made for the currently
requested and cached videos. As shown in Fig. 5, a request vector 𝑓 𝑣,
representing the number of requests [𝑓 𝑣

𝑡−ℎ, 𝑓
𝑣
𝑡−(ℎ−1), … , 𝑓 𝑣

𝑡 ] in previous
(ℎ−1) time slots along with the current time slot 𝑡, is provided as input
to the LSTM network to estimate the video popularity in the (𝑡+1) time
slot. Here, 𝑓 𝑣

𝑡 is a scalar value that represents the number of requests for
video 𝑣 ∈  in 𝑡th time slot. Thus, LSTM uses the requests in previous
6

ℎ time slots with 𝐿 requests in each slot to predict the request in the
(𝑡 + 1)𝑡ℎ time slot. The LSTM is initially pre-trained offline (warm-up
phase) with historic data profiles using the backpropagation through
time method weight initialization. The trained LSTM model is used for
the popularity prediction of the cached and latest videos. The cache
replacement algorithm makes use of trained the LSTM model to make
the farsighted caching decision.

The LSTM network comprises four layers: the input layer, two
hidden layers, and one output layer. The input layer gets a 3D tensor as
input of shape [𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑡𝑖𝑚𝑒− 𝑠𝑡𝑒𝑝𝑠, 1]. Each of the two hidden layers
is an LSTM layer with 128 LSTM cells. The output layer is a dense layer
comprised of 1 unit with a linear activation function.

5.2. CNN model for tile classification

Although MEC brings the cloud computing functions to the edge
of the network, it is constrained by resources. The size of the 360◦

video is extensive, and all the videos cannot be cached on the MEC
server. As discussed in Section 3, a user views only a portion of the
video at a time in 360◦ video streaming, and viewing patterns among
the users have a substantial correlation. Therefore, some tiles in the
tiled 360◦ video streaming are requested more than the others. Iden-
tifying and caching only these tiles can significantly improve system
efficiency. Some existing works (Maniotis and Thomos, 2021; Maniotis
and Thomos, 2021) use the previous playback data to identify these
tiles, but this data is not always available. Therefore, in this work, we
use a different approach by utilizing saliency maps to identify these tiles
without using the previous playback data. The saliency map identifies
the important pixels which contain the prominent details in the frame
that might attract the users’ attention. Given the saliency map of a tile
and an accurate classification model, it can be determined whether the
tile should be cached or not to achieve to higher hit rate.

Convolutional Neural Network (CNN/ConvNet) is widely used in
image classification (Bhandare et al., 2016). ConvNet encodes the
image-specific features into the network architecture, making it suitable
for image-based feature learning (LeCun et al., 1995). Unlike classical
models, CNNs take image data, train the model, and classify the fea-
tures automatically for better classification. There are three principal
components of CNNs: convolution layer, pooling layer, and fully con-
nected layers. Convolutional layers are made from several feature maps,
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and each unit of feature maps is made from convolving a small region in
input data, which is called the local receptive field. The convolutional
layer is sometimes called the feature extractor layer because features of
the image are extracted within this layer. Pooling layers are commonly
used immediately after convolutional layers. These layers are generated
to simplify the information and reduce the scale of feature maps. In
other words, pooling layers make a condensed feature map from each
feature map in convolutional layers. Fully connected layers are the
final layers in the CNN structure that can be one or more layers and
placed after a sequence of convolution and pooling layers. This part of
CNN comprises the composite and aggregates of the most important
information from all procedures of CNN. Consequently, these layers
provide the feature vector for the input data, which can be used for
machine learning tasks such as classification and prediction (LeCun
et al., 1995). The last layer of fully connected layers is known as soft-
max classifier and determines the probability of each class label over 𝑁
lasses (LeCun et al., 1995; Bhandare et al., 2016). Fig. 5 illustrates the
NN architecture used in this work. The proposed solution uses a CNN
ith six convolutions layers and two max-pooling layers with a dropout
f 0.25 and 0.5, applied after the third and fifth convolution layers.
he fully connected binary output layer is placed after the sixth layer
hrough max pooling. The CNN model is trained to identify the most
ngaging tiles through binary classification. The trained CNN model
akes a saliency map as input and determines the most engaging tiles
hich should be cached.

.3. Cache algorithm for tiles 360◦ video streaming

In this paper, we consider that each base station is deployed with
cache server having the caching capacity 𝑍 ≥ 0. We assume that 𝑈

sers,  = {1, … , 𝑢, … , 𝑈} connected to a base station, are served by
he cache server on the MEC deployed at that base station. The users
equest 360◦ video files from a content catalog of 𝑉 = || files, with
= {1, … , 𝑣, … , 𝑉 } being the set of 360◦ videos. In tile-based 360◦

ideos streaming, videos are generally divided into several tiles that
an be encoded and decoded independently. In tilling, a 360◦ video is
patially divided into ||×| | tiles, where  = {1, 2, … , 𝑚, … ||}
nd  = {1, 2, … , 𝑚, … | |}, and || and | | are the set of tiles in
column (vertical dimension) and row (horizontal dimension) of each

ideo segment, respectively. We assume that time is slotted in 𝑇 time
lots and in each time slot 𝑡 ∈  , the request of a user 𝑢 ∈  for the
iles of video 𝑣 ∈  is denoted by 𝑟𝑡𝑢,𝑣. All the cached videos on the
EC server are defined by the set . For each cached video 𝑣, the set

f cached tiles is defined by (𝑣,∀𝑣 ∈ ) and if a video 𝑣′ is not cached,
hen set 𝑣′ = ∅.

Algorithm 1 outline the steps followed in the proposed solution. The
aching algorithm uses pre-trained LSTM and CNN models to predict
uture video requests and classify the tiles. On a user request 𝑟𝑡𝑢,𝑣 for

video 𝑣 in time slot 𝑡, the MEC server check for the video in the
ache server. As stated in line-4 of the Algorithm 1, if video 𝑣 is cached

on the server, then cached tiles from the video request (𝑡𝑢,𝑣
⋂

𝑣) are
transmitted to the user while any missed tiles (𝑡𝑢,𝑣 − 𝑣) are fetched
from the server to serve the user. To make the cache replacement
decision, future requests (𝑓 𝑡+1

𝑣′ ,∀𝑣′ ∈ ) for all the cached videos and
the presently requested video (𝑓 𝑡+1

𝑣 ) are estimated. A cached video (𝑣′)
with the least number of predicted requests is replaced if its future
demand is lower than the present video (𝑣) else, the incoming video
is not cached. Since the MEC servers are resource-constrained and
users do not watch the whole view of 360◦ video, caching all the tiles
of the video results in inefficient resource utilization. Therefore, the
proposed method uses a CNN model to identify (𝐶𝑁𝑁(𝑆𝑣) → 𝑣) the
most engaging tiles 𝐼𝑣 of the video using the saliency map 𝑆𝑣. The
CNN is trained using the saliency maps of video to identify such tiles.
Once the tiles are classified, most engaging tiles (𝑣) are cached on
the MEC server by replacing the tiles of video with the least future
7

requests. The implementation details and training procedures of CNN
Algorithm 1: Caching algorithm for tiled 360◦ video streaming
Input: Pre-trained LSTM model with previous request data for

popularity prediction;
Pre-trained CNN model using the saliency map for tiles’
classification;
Set of all cached videos ; Set of tiles (𝑣,∀𝑣 ∈ ) for all
cached videos;
A set of requested tiles 𝑟𝑡𝑢,𝑣 by the user 𝑢 for video 𝑣 in time slot
𝑡;
Saliency map (𝑆𝑣,∀𝑣 ∈ ) of the videos;
Output: Updated set of cached videos  and tiles 𝑣,∀𝑣 ∈ 

1 for each time slot 𝑡 do
2 for each user 𝑢 do
3 for each request 𝑟𝑡𝑢,𝑣 do
4 if 𝑣 ∈ 𝐶 then /* if video is cached */
5 serve the cached tiles (𝑟𝑡𝑢,𝑣

⋂

𝑣) from cache ;
/* for cached tiles */

6 fetch missed tiles (𝑟𝑡𝑢,𝑣 − 𝑣) from the content
server ; /* for missed tiles */

7 else /* if video is not cached */
8 fetch video 𝑣 from CDN and serve the user;
9 𝑓 𝑣′

𝑡+1 ← 𝐿𝑆𝑇𝑀(𝑓𝑣′ ),∀𝑣′ ∈ 𝐶 ; /* predict
future requests of cached videos */

10 𝑓 𝑣
𝑡+1 ← 𝐿𝑆𝑇𝑀(𝑓𝑣) ; /* predict future
requests of requested video */

11 if 𝑓 𝑣
(𝑡+1) > 𝑚𝑖𝑛(𝑓 𝑣′

𝑡+1 ∶ 𝑣′ ∈ 𝐶) then /* if
requested video expected to have
more requests */

12 𝑣 ← 𝐶𝑁𝑁(𝑆𝑣) ; /* identify the most
engaging tiles using CNN */

13 Replace cached tiles of 𝑣′ with 𝑣 ;
/* Cache replacement */

14 else
15 No replacement;
16 end
17 end
18 end
19 end
20 end

and LSTM are discussed in the next section. Considering that the trained
CNN and LSTM models take constant time (𝑂(1)) for classification and
prediction. For each uncached video request, line 11 in Algorithm 1
takes 𝑂(𝑛) time, in the worst-case scenario, to find the cached item with
minimum expected requests. Thus, the worst-case time complexity of
the proposed algorithm is 𝑂(𝑛).

6. Results and analysis

The simulation environment is developed in Python using open-
source libraries for machine learning. For simulation, we consider a
single cell cellular network where users are connected to a base station
equipped with a MEC server. While we consider a single cell network to
demonstrate the efficacy of the proposed work, this work can be easily
extended for a multi-cell scenario, where MEC servers collaborate,
without any significant change. Furthermore, tiles are deemed to be
cached in the highest available quality while different user requests can
be fulfilled through transcoding at the MEC server itself (Lu et al., 2019;
Shi et al., 2020).

We use an open-source dataset (Lo et al., 2017) for 360◦ video
streaming simulations. A summary of this dataset is discussed in Sec-
tion 3. In the current section, we highlight some details which are
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Table 1
Accuracy of CNN classification corresponding to different tile sizes.

Tile size AUROC Validation accuracy

3 × 3 0.9002 0.8056
5 × 5 0.9425 0.8871
8 × 8 0.9418 0.8947
10 × 10 0.9485 0.9105
10 × 15 0.9271 0.8910
10 × 20 0.9572 0.8852

important for implementation. The dataset contains viewing orientation
traces of 50 subjects while each subject watched 10 different 360◦

ideos. It comprises 500 traces, each containing the one-minute 360◦

ideo playback. These videos are in 30 fps resultantly each trace con-
ists of 1800 data points. Each data point has viewing angles indicated
s raw, pitch, and yaw of the user in each frame which is sufficient
o identify the FoV. The 360◦ video dataset also contains the saliency
ap of all the videos that identify the features in the video frame by

ignaling out the important pixel. Cumulatively, these pixels help to
dentify the tiles with more detailed objects that the users will likely
erceive.

User requests contain the tiles information in video segments, there-
ore, one-second video segments are used to generate the user requests.
ince videos are shot at 30 𝑓𝑝𝑠, there are a total of (1800 ∗ 10∕30) =
00 video segments in the library to be requested by the users. The
ser’s 360◦ video requests are generated following the Zipf’s pop-
larity (Alexander et al., 1998) distribution which determines the
robability of next request to be for 𝑖th popular video and defined
s 𝑝𝑖 = 𝑖−𝛼

∑

||
𝑗=1 𝑗

−𝛼
, where Zipf parameter 𝛼 = 0.8 is used, as in Zink

t al. (2009). Using this distribution, 100 requests are generated in
ach time slot, and simulation runs for the 5000 time slots. The end-
o-end latency for fetching the video content is randomly assigned
etween [10, 20] ms uniformly when tiles are cached on the MEC
erver and [100, 200] ms for fetching the tile from the origin content
erver or CDN on the Internet. The 360◦ video segment size has been
sed to calculate the saved bandwidth. Different evaluation parameters,
ompared methods, and implementation and training details of LSTM
nd CNN are discussed further in this section.

.1. CNN model training

To realize a content-based FoV classification method, we utilized
he saliency map of the video and employed CNN to identify the most
ngaging tiles in the video segments. The CNN model is considered to
e trained on the cloud server with sufficient input data in an offline
anner and the trained model is pushed to the edge server. While

raining process does not require any special hardware and can be done
n an MEC server with sufficient training data. To speed up the CNN
raining process, the 3840 × 1920 resolutions saliency map of the input
ideo is down-sampled four times to 960 × 480 resolution and is used
s raw input for the tile classification. There are 1800 frames of saliency
aps for each video, and each frame comprises 200 tiles of 192 × 192
ixels each. The output of the CNN model is either 1 or 0, representing
relevant or irrelevant tile for caching, respectively. During training,
-fold cross-validation is performed to verify the robustness of the
odel. The value of 𝐾 is set to 5, and eight videos are used for training,
hile two videos are used for validation. The data is not shuffled before
aking 𝐾-fold to the data division across the videos. In training, input
ata of 8 videos are shuffled so that the model can robustly learn the

patterns from saliency maps of all videos.
The dataset (Lo et al., 2017) contains the traces for 50 differ-

ent users, and a tile might be in FoV for one user while in Out-of-
Sight (OOS) for another. To overcome this issue while labeling the input
data, we use a threshold of 30%, which is determined through empirical
8

results and found to work well. If more than 30% users have watched
Table 2
Training loss for LSTM corresponding to different hyperparameter settings.

No. neurons LSTM layers Dropout Loss value Dropout Loss value

32 1 F 0.000893 T 0.0010
32 2 F 0.000902 T 0.000912
64 1 F 0.000896 T 0.000939
64 2 F 0.000905 T 0.000884
128 1 F 0.000895 T 0.000863
128 2 F 0.000897 T 0.000894

the tile, it is considered as an engaging tile, otherwise as an irrelevant
tile. In the training data, engaging tiles are labeled as 1 while other
tiles are labeled as 0. On classification, 23.2% of tiles are classified
as engaging tiles. AUROC (Area Under the ROC Curve) is calculated
during the training of the model for validation, and the best weights of
the model are stored based on maximum validation AUROC. The mean
testing AUROC is 0.8791 with a standard deviation of 0.0652. We test
the classification method for different tile sizes and results in Table 1
exhibit that the CNN model achieves good accuracy regardless of the
tile size.

6.2. Training of LSTM model

For video popularity prediction, an LSTM network is implemented
in Python with the open-source Keras (Keras, 2021) library. First, the
LSTM network parameters are tuned through an empirical study, and
results are tabulated in Table 2. During training, the LSTM network
is initially pre-trained (warm-up phase) with 2000 samples of historic
data profiles. Each sample represents the evolution in the popularity
of 360◦ videos over ℎ = 6 consecutive time-slots. The LSTM model
is pre-trained with a batch size of 100 for 50 epochs, using the Mean
Square Error (MSE) loss function between the LSTM’s outputs and the
actual popularity. The historic data profiles are split into a training set
and validation set, where the training set accounts for 80% of the past
data and the validation set the rest, 20%. After training the LSTM, the
trained weights are used by the prediction module to forecast future
content popularity in the online phase.

6.3. Training and processing time of CNN and LSTM models

Both the models are trained in an offline manner on a mobile
workstation with 8 GB RAM and 𝐼𝑛𝑡𝑒𝑙 𝐶𝑜𝑟𝑒 𝑖7 processor without any
hardware acceleration. It takes ≈5 h to train the CNN model and
training the LSTM model only requires 30 min. Since, both the models
are considered to be trained on the cloud server in an offline manner,
training time does not matter for our application. On the deployment
of trained models, the LSTM model takes 28 ms to make the popularity
predictions and the CNN model takes 0.25 s to classify the tiles. While
the LSTM model needs to be executed for each uncached video request
in the cache replacement algorithm, the CNN model needs to be exe-
cuted only once for each video, and the results can be stored as a binary
map of tiles, representing the most engaging tiles for future reference.
In the 360◦ video caching solution, the runtime of these models does
not affect the streaming latency. Because if the video is already cached,
there is no need to execute the models, and if the video is not cached,
the models are executed alongside while content is served to the user.
For model training and deployment, a general-purpose mobile worksta-
tion is utilized without any hardware acceleration, which affirms that
these models can be trained and deployed on the resource-constrained

MEC server without any need for special hardware.
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6.4. Evaluation methodology

The performance of the proposed solution is evaluated on the fol-
lowing metrics, which are crucial for user QoE in 360◦ video streaming.

• Cache Hit Rate: The hit rate is a direct performance metric for
content caching and represents the fraction of requests fulfilled
by the cache on the MEC servers.

• Latency: 360◦ video streaming has stringent latency requirements;
therefore, it is essential to analyze how the proposed solution
affects the latency. Here, latency is considered as average end-
to-end latency between the user and content server (either cache
or main content server) serving the video.

• Backhaul Usage: It represents the bandwidth consumed in the
backhaul for 360◦ video streaming. Backhaul usage help in show-
ing the decrease in data transmission for 360◦ video streaming
when edge caching is employed. This metric exhibits the ability of
a method to enable the 360◦ video streaming over the bandwidth
constraint cellular networks and indicates the reduction in OPEX
of the network operator.

These performance metrics are evaluated for the various values of
he following parameters:

• Cache Size: MEC is constrained by resources and offers limited
storage space. Therefore, it is essential to assess the performance
of different cache sizes. In the evaluation results, cache size
represents the percentage of video library size that can be cached
(e.g., 10% cache size means that the MEC server is able to cache
10% of the video library) on the MEC server.

• Video Popularity Distribution: If popularity distribution is highly
skewed, even a simple LRU cache replacement algorithm can
perform well. But, a robust solution should perform considerably
9

well over a range of popularity distributions. Therefore, the Zipf
parameter 𝛼 has been varied in the simulations to evaluate the
performance of the proposed solution for different popularity
distributions.

.5. Scheme under comparison

Based on the above-mentioned metrics and parameters, we have
ompared the proposed solution with the following methods:

• Least Recently Used (LRU): In this scheme, the MEC server asso-
ciates a timer with all the cached items and updates its value
whenever an item is requested. If a requested 360◦ video is not
cached, then all the tiles of the 360◦ video that were requested
least recently are replaced with the tiles of the newly requested
video.

• Least Frequently Used (LFU): In LFU, the cache server keeps track
of the number of requests for each cached 360◦ video, and all the
tiles of the 360◦ video are cached on the MEC server. When a
requested 360◦ video is not cached at the MEC server, the video
requested the least amount of time is replaced with the new video.
If the requested 360◦ video is cached at the MEC server, then the
corresponding frequency counter is updated.

• RL-based Caching Solution: Reinforcement Learning has been used
for legacy and 360◦ video caching (Zhang et al., 2019; Maniotis
and Thomos, 2021). In these methods, RL is used to make the
cache replacement decision. The number of requests, time of
the last request is associated with each cached 360◦ video and
provided as state variables to the RL model. When a 360◦ video
request arrives, which is not cached at the MEC server, the
RL model determines whether the new video should be cached
or not. In case of replacement, it also specifies which one of
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the cached videos should be replaced with the new video. We
implemented a state-of-the-art Asynchronous Advantage Actor
Critic (A3C) algorithm for the result comparison.

• LSTM-based Caching Solution: This solution uses LSTM to predict
the future request of the cached videos (Narayanan et al., 2019).
When a 360◦ video request arrives that is not cached, cache
replacement is done based on the future expectation of the video
requests. If the expected number of future requests of new 360◦

video is higher than the cached video with the least number of ex-
pected future requests, then replacement takes place; otherwise,
the user is served from the Internet without caching at the MEC
server.

• Optimal Solution: For the optimal solution, video popularity and
tiles’ viewing probability is known in advance. The tiles with
highest joint probability, calculated using video popularity and
tiles’ viewing probability, are used to cache the tiles at the MEC
server.

.6. Results and analysis

.6.1. Effect of change in cache size
Results in Fig. 6a depict that with the increase in cache size, the

it rate improves owing to the possibility of caching a higher number
f videos in the MEC server with larger cache storage. The proposed
ethod improves the cache hit rate by 10% as compared to LSTM based

aching and widely outperform the other methods. The performance of
he proposed solution is closest to the optimal results, with a gap of
8%. Interestingly, the RL-based caching method performs better than

he LSTM-based 360◦ video caching when the cache size is smaller than
%, but LSTM surpasses the RL-based method when the cache size is
arger than 4%. Moreover, the performance of the RL-based method is
nconsistent across the different cache sizes. A possible explanation for
10
this might be that a separate RL model is trained for each cache size due
to different action spaces, and the performance of these models is not
similar. The LFU performs inadequately among all the tested methods
and was found unsuitable for the 360◦ video caching.

6.6.2. Improvement in network latency
As illustrated in Fig. 6b, the proposed method improves the end-

to-end latency by at least 15 ms over the other solutions, which is
very significant for 360◦ video streaming. The performance of LFU is
the worst among all evaluated methods, and its latency is more than
120 ms in most cases, which is not suitable for 360◦ video streaming.

s cache size increases, more requests can be served from the MEC
erver at the network edge with very low latency. Therefore, latency
ecreases with the increase in the cache size. To evaluate the effect
f popularity distribution on latency, we assess the proposed method
or various popularity distributions. To achieve that, we increase the
alue of Zipfs’ parameter 𝛼 in steps from 0.2 to 1.0 while keeping a

constant cache size of 10%. Fig. 7b presents the results obtained from
this analysis which conveys that as the popularity distribution gets
more skewed, on the increase in the Zipfs’ parameter 𝛼, the latency of
all the methods decreases. For 𝛼 = 1, LSTM performs correspondingly
well to the proposed method.

6.6.3. Reduction in backhaul usage
Data requirement of 360◦ video streaming can cause backhaul

congestion and poses a challenge for cellular networks. Therefore, we
analyze the effect of edge caching on backhaul data usage for different
cache sizes and popularity distributions. The results in Fig. 6c show
that the proposed method reduces data consumption in the backhaul
network by at least 35% as compared to any other evaluated method.
This reduction in downloaded data from the ISP also reduces the OPEX
for the network operators. The increase in cache size positively affects
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the backhaul load, and it decreases with an increase in cache size.
Since a large number of user requests are served from the edge of the
network for a bigger cache size, it decreases the data over the backhaul
network. As skewness of popularity distribution increases, a decrease in
the downloaded data can be noticed in Fig. 7c.

6.6.4. Effect of change in video popularity distribution
The value of the Zipfs’ parameter 𝛼 is step-wise varied between 0.2

and 1.0 to analyze the performance of the proposed method for differ-
ent popularity distributions. The results in Fig. 7 exhibits that as the
popularity skewness increases, the performance gap converges among
all the evaluated methods except LFU. Moreover, the performance gap
between the optimal results and proposed solution widen marginally as
the value of Zipfs’ parameter is increased. For highly skewed popularity
distribution, only a few popular videos get most of the user requests.
Therefore, caching the tiles to use the storage space effectively gets less
advantageous because the tiles with less salient points also get some
views in the highly popular videos. The proposed method provides
a 20% improvement in the hit rate for 𝛼 = 0.8, which is close to
real-world values. Hence, in real-world settings, caching the tile has
a performance advantage over caching the whole 360◦ video.

Overall, these results indicate that the content-aware method can
help overcome the need for the past playback data to identify the
most engaging tiles by employing a CNN-based classification method
using video saliency maps. Moreover, the proposed deep learning-
based method performs consistently well for different cache sizes and
popularity distributions.

7. Conclusion

This work presents a caching solution for tiled 360◦ video stream-
ing. The proposed solution caches specific tiles instead of the whole
360◦ video to optimally utilize the MEC resources. The existing solu-
tions require past playback data to estimate the tiles’ viewing probabili-
ties for tiled 360◦ video caching. In contrast, the proposed solution uses
deep learning tools to identify the most engaging tiles in 360◦ video
and predict the video popularity. Specifically, LSTM is used to estimate
the future demand for the 360◦ video content, and a CNN model is
mployed to identify the most engaging tiles for caching. The LSTM
odel uses the video requests in previous time slots to predict future
opularity. The CNN model is trained to identify the most engaging
iles based on the video content itself, namely the video saliency
ap. This work demonstrates that in absence of the previous playback
ata content features can be exploited to identify the tiles which can
aximize the cache hit ratio. The proposed framework is extensively

valuated through simulations with real-world head movement traces.
esults assert that the proposed solution improves the cache hit rate
y 10% and substantially reduces the backhaul usage by at least 35%.
oreover, the proposed solution significantly reduces the end-to-end

atency, which is critical for user QoE in 360◦ video streaming. This
work focuses on the identification of the most engaging tiles for 360◦

video caching, in the future, it will be interesting to explore the
collaborative caching among the multiple MEC servers with transcoding
and joint consideration of network and computation resources.
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